Roles of SecG in ATP- and SecA-dependent protein translocation.
نویسندگان
چکیده
SecA, the translocation ATPase in Escherichia coli, undergoes cycles of conformational changes (insertion/deinsertion) in response to ATP and a preprotein. The membrane-embedded portion of protein translocase, SecYEG, has crucial roles in the SecA-driven preprotein translocation reaction. We previously identified a secY mutation (secY205) that did not allow an ATP- and preprotein-dependent (productive) insertion of SecA as well as secA mutations that suppressed the secY205 translocation defect. One of the suppressor mutations, secA36, also suppressed the cold-sensitive phenotype of the secG deletion mutant. In vitro experiments at 20 degreesC showed that inverted membrane vesicles lacking SecG were almost inactive in combination with the wild-type SecA protein in translocation of proOmpA as well as in the accompanying ATP hydrolysis. In contrast, the SecA36 mutant protein was found to be able to execute the translocation activity fully at this temperature, even in the absence of SecG. A SecG requirement and its alleviation by the SecA36 alteration also were shown for the SecA insertion reaction. The finding that the SecA36 protein no longer requires assistance from SecG in its insertion and in its catalysis of protein translocation agrees with the idea that SecG normally assists in the functioning of SecA. In agreement with this notion, when the intrinsic SecA function was compromised by a lowered ATP concentration, SecG became essential even at 37 degreesC and even for the SecA36 protein. We propose that in the normal translocase, SecG cooperates with SecA to facilitate efficient movement of preprotein in each catalytic cycle of SecA.
منابع مشابه
Multiple SecA molecules drive protein translocation across a single translocon with SecG inversion.
SecA is a translocation ATPase that drives protein translocation. D209N SecA, a dominant-negative mutant, binds ATP but is unable to hydrolyze it. This mutant was inactive to proOmpA translocation. However, it generated a translocation intermediate of 18 kDa. Further addition of wild-type SecA caused its translocation into either mature OmpA or another intermediate of 28 kDa that can be translo...
متن کاملInversion of the Membrane Topology of SecG Coupled with SecA-Dependent Preprotein Translocation
E. coli preprotein translocase comprises SecA and SecY/E/G complex. SecA delivers the preprotein to the putative protein-conducting channel formed by SecY/E by undergoing ATP-driven cycles of membrane insertion and deinsertion. SecG renders the translocase highly efficient. An antibody raised against the C-terminal region of SecG inhibits preprotein translocation into everted membrane vesicles ...
متن کاملPreprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits.
Bacterial protein translocation is mediated by translocase, a multisubunit membrane protein complex that consists of a peripheral ATPase SecA and a preprotein-conducting channel with SecY, SecE, and SecG as subunits. Like Escherichia coli SecG, the Bacillus subtilis homologue, YvaL, dramatically stimulated the ATP-dependent translocation of precursor PhoB (prePhoB) by the B. subtilis SecA-SecYE...
متن کاملDistinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme.
Escherichia coli preprotein translocase contains a membrane-embedded trimeric complex of SecY, SecE and SecG (SecYEG) and the peripheral SecA protein. SecYE is the conserved functional 'core' of the SecYEG complex. Although sufficient to provide sites for high-affinity binding and membrane insertion of SecA, and for its activation as a preprotein-dependent ATPase, SecYE has only very low capaci...
متن کاملReconstitution of an efficient protein translocation machinery comprising SecA and the three membrane proteins, SecY, SecE, and SecG (p12).
A cytoplasmic membrane protein, p12, of Escherichia coli was discovered as a new factor that stimulates the protein translocation activity reconstituted with SecA, SecY, and SecE (Nishiyama, K., Mizushima, S., and Tokuda, H. (1993) EMBO J. 12, 3409-3415). Direct involvement of p12 in protein translocation was subsequently demonstrated in vivo by genetic studies, and the name SecG has been propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 23 شماره
صفحات -
تاریخ انتشار 1998